11 Functions

71. (2nd exam, January 2022) The function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by

$$f(x) = x^2.$$

Examine the injectivity, surjectivity, and bijectivity of the function f.

72. Let \mathbb{R} be the set of real numbers, and let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = 5x + 12.$$

Examine the injectivity, surjectivity, and find $f^{-1}(x)$.

73. Consider the following relation:

$$\{(x,y)\in\mathbb{R}\times\mathbb{R}: y^2=\sqrt{x}\}.$$

Determine if the given relation is a function on \mathbb{R} . (Provide a detailed explanation of your answer.)

74. Let $\mathbb{R}_0^+ = \{x \in \mathbb{R} \mid x \ge 0\}$. Consider the following relation:

$$\{(x,y)\in\mathbb{R}^+_0\times\mathbb{R}:y^2=\sqrt{x}\}$$

Determine if the given relation is a function from \mathbb{R}_0^+ to \mathbb{R} . (Provide a detailed explanation of your answer.)

75. Let $\mathbb{R}_0^+ = \{x \in \mathbb{R} \mid x \ge 0\}$. Consider the following relation:

$$R = \{ (x, y) \in \mathbb{R}_0^+ \times \mathbb{R}_0^+ : y^2 = \sqrt{x} \}.$$

Determine if the given relation is a function on \mathbb{R}^+_0 . (Provide a detailed explanation of your answer.)

76. Let $a, b \in \mathbb{R}$ and $b \neq 0$. The function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{a\}$ is defined by

$$f(x) = a + \frac{b}{x}.$$

Examine the injectivity, surjectivity, and bijectivity of the function f.

77. Find an example of:

- (a) An injective function $f : \mathbb{N} \to \mathbb{N}$ that is not surjective.
- (b) A function $f : \mathbb{N} \to \mathbb{N}$ that is surjective but not injective.

78. Let \mathbb{N} be the set of natural numbers, and let $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function defined by

$$g(m,n) = 2^m \cdot 3^n.$$

Examine the injectivity, surjectivity, and determine g^{-1} (if it exists).

79. Let \mathbb{Z} be the set of integers, and let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a function defined by

$$f(m,n) = m + n.$$

Examine the injectivity, surjectivity, and determine f^{-1} (if it exists).

80. Let $f : A \to B$ be a function, and let $im(f) := \{y \in B \mid (\exists x)((x, y) \in f)\}$. Prove the following implication:

• If f is an injective function, then f^{-1} is a function from im(f) to A.

(In the above implication, f^{-1} is the inverse relation of the relation f, i.e., $f^{-1} = \{(y, x) \mid (x, y) \in f\}.$)

81. (Theoretical Exercise) Let $f : A \to B$ be a function. If there exists a function $g : B \to A$ such that

 $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$,

show that f is a bijective function and $g = f^{-1}$.

82. (Theoretical Exercise) Let $f : A \to B$ and $g : B \to A$ be given functions. Prove the following implications:

- If $f \circ g = id_B$, then $f \circ g$ is a surjective function.
- If $f \circ g$ is a surjective function, then the function f is also surjective.

(In the first implication above, id_B is the identity function on the set B, i.e., $id_B(b) = b$ for all $b \in B$.)

All above math problems are taken from the following website:

https://osebje.famnit.upr.si/~penjic/teaching.html.

The reader can find all solutions to the given problems on the same page.